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In many problems of rolling of a rigid body on a surface use is often made of the aasnmption 

of point contact [l to 51. However, nanally the area of contact haa a surface which,although 

small, differs from zero, therefore the introduction of the concept of point contact into 

mechanics is a specific idealization used to simplify the mathematical model of a real 

system. In many cases, especially iu problems of statics, such idealization may be justified. 

In dynamica, a different situation may occur, namely: the magnitude of the area of contact, 

which tenda to zero, enters into the differential equation of motion in the form of a small 

parameter, and then we cannot know in advance whether the final motion of the body 

will coincide with the motion of the ideal system (i.e. body with point contact) in the limit. 

In the present work this qaestion is studied by the example of the motion of an 

homogeneous sphere on a rough plane. The investigation of the dynamics of the syetem 

shows that the motion of a sphere with a surface of contact has a singular quality which 

remains when the area of contact surface tends to zero. Moreover, it is explained that the 

trajectory of the center of the sphere when the area of contact tends to zero approaches the 

trajectory of the center of the sphere with point contact. 

1. Fonnuhation of problem and equations of motion. We consider the inertial motion 

of an homogeneous heavy sphere on a horizontal rough plane. Let the radius a of the area 

of contact of the sphere with the plane be math smaller than the radius R of the sphere. In 

this case we may neglect the curvature of the surface of contact, and assume that pressure 

on the plane of contact is dia,tributsd uniformly. We shall introduce a fixed coordinate 

system OXYZ (Fig. 1) and the following notation : U( u, D, 0) is velocity of the center 

of the sphere, w (ax, my, w,) is the angular velocity of rotation of the sphere, m its 

mase, p iPs radius, of inertia, F (F,, F,, 0) is the resultant force of friction, M is the 

moment of force of friction with respect to the vertical axis pasaing through the center of 

the plane of contact. 
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FIG. 1 

V (v cos 8, v sin 8, 0) is the velocity of a point on the sphere, coinciding with the 

center of the plane of contact. In this notation the equations of motion have the form 

du 
mz=F,, m*=F 

dt Y 

mpZ!$ = RF,, m@x - doY - -RF,, “pa dt doz= M 
(1.1) 

To these equations we add the kinematic relation 

v cos 8 = u - Ray, VsinO = ZJ +Rox (1.9 

which in the case of a sphere rolling without slipping (V = 0) are changed into nonholonomic 

equations. From equations (1.1) and (1.2) it directly follows that in the case of motion with- 

out slipping the center of the sphere moves in a straight line with constant velocity, as in 

the case of point cantact. We will assume that the forces of interaction of the sphere with the 

plane are the Coulomb (dry) friction forces. We denote the coefficient of dry friction x . 

After calculations analogous to these given in the book by Lur’e [G], we obtain 

F= - $mgxkfl (k), M = -2 mgxaf, (k) for V<aaol 

F= - & mgxfl (kd, M = - & mgxaf, (kl) 
(1.3) 

for V>/ao, 

where functions 

fi (Ic) = (I@ + 1)E (k) - (A+ - 1)K (k) (k = U~I = V/eQ 

fs (le) = k-’ [(4 - 2k-2)E (k) - (k-8 - 1) (3k2 - 2)K (k)l (1.4) 

fs (FE) = (4 - 2kz)E (k) - (1 - k2)K (k) 

are expressed by complete elliptic integrals K (k) and E UC) in terms of the modulus k. 

Let us differentiate the relations (1.2) with respect to time and replace the derivatives 

in thefrrfghthandsideswith these from (1.1). Putting also p, = F CO9 8, Fv = F sin (j 

and aolvfng the obtained equations with respect to derivatives, we have 

dv 
dt= +(i+$)F, V+=o 

(1.5) 
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From the second equation of (1.5) it follows that 0 = (jo = const, i.e. the dir- 

ection of the velocity of slipping of the center of the plane of contact remains fixed. The 

first equation of (1.5) and the last equation of (1.1) together with (1.3) and (1.4) form a 

closed system of equations. The study of the motion of a sphere with slipping can be now 

reduced to the examination of the above system of equations. To simplify the notation, we 

introduce 

52 = ao,, 
aa 

fJ = 3 (P$p2) 
,+(1+$)t 

(1.6) 

where z is a new time. 

In this notation the obtained equations assume the form 

V’ = -4 (k), St’=-_cLfg(JE) for V<Q 

V = - fl(WP Q'=-_ta(h) for V>,Q ( 
k=$=g) (le7) 

(1.8) 

Here dots will denote differentiation with respect to new time ‘c; functions ft, fa, 

and fn are determined by expressions (1.4). From equations (1.7) and (1.8) it follows that 

the dynamics of the system considered here, is defined by a unique parameter cl, proportional 

to the surface area of contact. 

2. MOtlOtt of B sphere with slippittg. In accordance with the system (1.7) and (1.8) the 

FIG. 2 

motion of a sphere with slipping may be compared with the 

motion of a representative point in the first quadrant of the 

Vn plane. This quadrant is divided by the bisector a = V 

into regions S and S,; in region S the motion of the point is 

given by Equation (1.7). and in region S, by Equation (1.8). 

On the boundary 0 = V the solutions of Equations(l.7) and 

(1.8) ‘are fused’ by conditions of continuity. The analysis 

(cf. section 4 Application) oi the behavior of functions fi, fB 

and fa results in the curves shown on Fig. 2. Hence from 

equations (1.7) and (1.8) it follows that the values of V and 

R are monotone decreasing with time. We shall now consider 

the qualitative behavior of the integral curves on the V,fi 

plane, the equations of which have the form 

(2.1) 

The family of isoclines consists of a pencil of straight lines, passing through the 

origin of coordinates. By Fig. 2, functions entering in the right-hand sides of equations 

(2.1) and (2.2) are represented by the curves shown on Fig. 3. These curves make it 
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possible to compare the angle of inclination of the tangent to the integral curve with the 

angle of inclination of the corresponding isocline, and by the same token to Construct the 

vector field of tangents on the VQ plane for various values of the parameter p (0 4~ < -1. 

For values of p within the interval (‘/a < p < a/$ one of the integral cnrves is a 

straight line, passing through the origin of coordinates. Fig. 4, 

shows the TrQ plane with the trajectories plotted for smalf values 

and we notice that all the trajectories terminate 

at the origin of coordinates. The coordinate axes Q = 0 and 

V = 0 will also be trajectories of motion of the representative 

f7 
The above argument leads us to the following conclusion: 

f for any initial condition, for which the velocity V of sliding and 

FIG. 3 the anguIar veIocity wx of rotation of the sphere differ from zero, 

the sphere with a surface contact moves so that the rotation and 

sliding diminish with time and always cease simnltsneously. 

3. Limiting motion of a sphere when surface area of contact tends to zero. The motion 

of a sphere with point contact (limiting system) is described by the equations (1.8) in which 

transition to the limit a + 0 must be made. Then, from the second of the eqaations (1.8) we 

obtain or = const, while the first equation yields v = v, - aldna. On the plane (I’, Q) 

the representative point moves along the axis Q = 0, reaching the origin of coordinates after 

a finite interval of time To = “/a ‘vo / ZC. At the same time the center of the sphere des- 

cribes a parabola, while after the time Toit begins to move a straight line. 

We shall consider the motion of a sphere with its 

area of contact with the plane of contact tending to 

zero. The motion in this case is described by the 

system of Equations (1.7) and (1.8) in which 

0 < CL< 1. Let us express this system in one 

Equation 

*Y 
&-J/dV= @D(k) (k=V/Q) (3.1) 

D<fl c 
8 

The function CD (k), as folIows from Fig. 3 

FIG. 4 
aud the right-hand sides of Equations (2.1) and (2.21, 

is represented by a curve contained between hyper- 

bolas 3/8k and 2/k. Therefore [7] the solution of 

Equation (3.1) lies between the solutions 
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Here & and Vo are the initial values. From Fig. 4 it follows that for any initial 

values, for which 52, # 0, the representative point will always eventually arrive to the 

region S. Let us estimate the time T, of the motion of the representative point in region S, 

if, in the initial moment, the point lies on the boundary of the regions S and St. In this 

case Vo = 520, and the solutions (3.2) are written in the form 

Q 1= QO 
(l-%P) p p, 

922 = !& 
P-aP)p (3.3) 

The first equation of (1.7) reaches its maxima at v’ = - r/,nk and v’ = - 2k. 

Substituting here the solutions (3.3), we obtain 

v- = _ ACV(l-B) (3.4) 

Here the constants A, B and C are correspondingly equal to one of two values 

A = 2, 8/4 n; B = 3/s p, 2~; c = s-&pPL-1), ~p--1) (3.5) 

The solution of Equation (3.4) has the form 

V”B = Q,B - ABCT (3.6) 

Assuming hers V = 0, we find the time ‘t = T, of transition of the representative 

point from the boundary &&, = VO to the origin of coordinates. According to (3.5) the 

time T, lies within the interval 

(3.7) 

Hence, by (1.6), it follows that limit T, = JO for a -, 0. Thus for an arbitrarily 

small but non-zero area of contact the time of motion of the sphere with slipping becomes 

arbitrarily large. 

This illustrates the qualitative difference between the motion of a sphere with a sur- 

face of contact vanishingly small, and the motion of a sphere with point contact. 

For the path length s of the motion of representative point in the region S we have 

n 
vB dB = d’-‘) (3.8) 

AC (I+ B) 

Here for dz we have used the expression (3.4). From the equality (3.8) it follows 

that lim I = 0 as a + 0, i.e. for a + 0 the trajectory of the center of the sphere with a 

surface contact approaches the trajectory of a sphere with point contact. 

4. Application. We again note that on the interval 0 < x < 1 the function K (z) 

represents a curve monotonely increasing from the value K (0) = l/z n to infinity. The 

derivative 
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increases monotoneIy from zero to infinity. The function E (a) represents a carve monotonely 

decreasing from E (0) = I/* at to E (1) = 1. The derivative 

dE _,+(E-K)<O 
ciz 

monotonely decreases from zero to - =. 

From (1.4) it foIIows that fi (1) = fa (1) = fs (1) = 2. Aho 

since 

‘p (x) EE (1 - l/s x2) E - (1 - 2) K > 0 

Indeed 

‘p (0) = 0, ‘p’ (2) = VA z {K - E) > 0 

Calculating the second derivative, we find 

Vd 

In fact, the fan&on ql (s), = (1 - 1/a 9) R - P is positive everywhere on the inter- 

0 4 3 < 1 since 

cp1m = 0, cpr'(z)=~ 2 &E-K)>0 ( 

Thus the function fi (x) ~311 be monotoneIy decreasing, and its fist derivative will 

dscreaea from the value f;(o) = 0 monotanely to the v&c fl’(l) = - 1. 

Let us now investigate the behavior of the function fi (xl. We find 

fa (0) = 0, fs’ (4 2$[(&f) E-_(14)K]>O 

since the function ‘pz (z) 3 (1 - ‘la 9) E - (l - z*) K is positive. Indeed, 

‘pa (0) = 0, ‘pa’ (3) = S/P x (Y - E) > 0 

The aacond derivative is also positive 

fa” (4 = 4 [(S - 36) x - (8 - 9) Ef > 0 

since the function ‘ps (2) s (8 - 32’9 K - (8 - 9) E IS positive. 

Indeed. 
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% (0) = 0, 93’ (s) = z [ “II? E----K >O 
1 

because the expression in parentheses is the sum of two positive terms 

Therefore the function f2 (z) is monotonely increasing from the value fz(0) -_ 8 to 

the valoe fz (1) = 2. The first derivative also increases monotonely from flf (0) = @/aa n 
to #z’ (1) = 3. 

Finally, let UB investlgate the behavior of function f3 (x). We find 

fa (0) = 9, 
3 

fa’(~~=--_~(l-~a)~-((Z-2~~)~)<0 

since the function (1 - x1) K - (1 - 2x*) E = (1 - ~2) (K - E) + xzE is positive. 

Further, 

fs” (z) = -$ I(4 + 222) K - (1 +4x2) Ef, 1s” (0) = - $ < 0, fs” (I) = i_ oo 

The function f,” (z) becomes equal to zero only once, since 

fs”’ (z) = 4 (11 1: 7.3-K >O 
1 

Therefore, the curve fs = fs (z) emerges from the point (0, 3/o Z) with the angle of 

incllnntion of its tangent equal to zero. The angle of inclination then diminishes until, 
the point x = 30, where x0 is a root of the equation (f+ ZZa) K = (1 + 4x2) E after 
which it increases to the velue for which the derivative is equal to f8’ (1) = - 3. 
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